
Attacking Android’s Intent Processing and
First Steps towards Protecting it

Peter Schartner · Stefan Bürger

Universität Klagenfurt
System Security | IT Services

{peter.schartner | stefan.buerger}@aau.at

Technical Report TR-syssec-12-01

Abstract

Many operating systems, including the Windows- and Android-family, are based on message processing.

These messages (called events or intents respectively) are sent from the operating system to applications

or vice versa or between applications. Both, Windows, and Android provide entry points (so called hooks)

for additional message processing software. Since there is no check, if these additional event processing

methods are malicious or not, this opens the door for well known attack scenarios like password-sniffers.

But even worse, the new message processor may drop system messages or insert new (forged) messages

into the event queue. In this paper we will describe, how additional message processing routines can

be used to attack systems secured by mTANs (mobile TANs – TANs sent to the user’s phone via the

short message service – SMS) like web-banking and mobile signatures on PCs and smartphones. After

describing the attack principle, we will discuss potential countermeasures and open problems.

Keywords: Attacking Android intents, smartphones, intent manipulation, intercepting mTANs, intent

protection.

1 Introduction

Starting with 1.1.2011 most German and Austrian financial institutes have replaced printed
TAN-lists with other security systems. Most popular mechanisms to authorize financial trans-
actions are so called SMS-TANs (or mobile TANs – mTANs) and digital signatures. Both
systems use two-factor-authentication: knowledge of a password or PIN, and possession of a
mobile phone or smartcard. In this article, we will focus on mTANs or similar systems which
use smartphones to send authorization data to the user.

Figure 2 shows the operating principle of financial transactions which are authorized by use of
mTANs. First, as with most other e-banking processes, the user starts his web browser, opens
the URL of his bank within a HTTP-session and enters login and password. This data is sent
to the e-banking server, where it is verified. In the next step, the user enters his transaction,
which is again sent to the e-banking server. To complete his transaction, the user clicks on a
button labeled like “Send mTAN”. Now, the e-banking server generates a random mTAN (most
commonly 4 to 8 alphanumeric characters) and sends it via SMS to the mobile phone of the
user. The user receives this short message, extracts the mTAN and types the mTAN into the
according text-field of the e-banking webpage. If the verification of the mTAN at the e-banking
server is successful, the transaction is completed. Otherwise it is canceled. In both cases, the
user is informed accordingly via the e-banking webpage.

Technical Report TR-syssec-12-01 · Universität Klagenfurt (2012).



2 Technical Report TR-syssec-12-01

The advantage of this system over conventional TAN-lists is the second factor within the au-
thentication process: possession of the mobile phone. Now, even if the attacker has full control
over the PC and gets hold of login and password he still fails to complete the authorization
process, because he has no control over the mobile phone of the user. In order to complete the
authorization, he additionally needs either physical access to the mobile phone (which can easily
be detected or prevented) or control over the mobile phone. This paper discusses ways how to
achieve the latter requirement in two situations:

1. e-banking by use of a PC and a mobile phone

2. e-banking by use of a smartphone or tablet PC (or equivalent hardware) with integrated
GSM/UMTS communications.

The second scenario is obviously the more dangerous and from the researchers point of view the
more interesting one: here the attacker has to get control over only one device. Additionally,
this device is most commonly not as secure as a PC or laptop is.

2 Related Work

In the context of PCs, some attacks, based on manipulating the message processing system,
have been described. The so called “shatter attack”, was described in a paper of Chris Paget
[1], [2] in August 2002. After inserting an additional message handler (see figure 1 for the
operating principle), the WM_SETTEXT message is used to copy malicious code into a text-field of
an application, which is hence transferred into its memory. After inserting the malicious code,
the WM_TIMER message was used to jump to the address of the malicious code to get it running.
Countermeasures (“Shatter-proofing Windows”) against this and other message-based attacks
have been discussed in 2005 by Close, Karp, and Stiegler [3]. Until now, none of them has been
integrated into current operating systems.

System

System Message 
Queue

Thread Message Queue

Keyboard/Mouse Input

GetMessage()

WndProcA() WndProcC()WndProcB()

queued?

Original Message Path
System

System Message 
Queue

Thread Message Queue

Y

Keyboard/Mouse Input

GetMessage()

WndProcA() WndProcC()WndProcB()

queued?
N

Additional 
Message 
Handler

Entry Point
(Window-Hook)

Modified Message Path

Entry Point
(Keyboard/Mouse-Hook)

target
window?

N

N

Y

Y

Figure 1: Original (left) and modified message path (right)



Intent Protection 3

User with mobile Phone and Web Browser e-Banking Server SMS Provider

Open e-Banking-
Webpage (HTTPS)

Check login/password 
and transaction data

Enter login/password
and transaction data

Send SMS
including mTAN

Receive SMS and
extract mTAN

Enter mTAN Check mTAN

Complete
transaction

Confirmation of 
transaction

Figure 2: Authorization of transactions by use of mTANs

3 Attack Method for Smartphones

If a smartphone is used for e-banking, the web browser and the SMS management run on the
same device. So the attacker’s goal is to place a program (trojan) on the smartphone which
provides a

1. password-sniffer to get hold of the e-banking login and password and

2. manipulates the short message processing in a way, that the user will not notice mTANs
for transactions he never initiated.

Note that this attack scenario also works for GSM/UMTS-enabled tablet-PCs or laptops. Since
smartphones most often are less protected against malware than tablet-PCs or laptops, we will
focus on smartphones running the Android operating system [4] in the remainder of this section.

3.1 Android’s Intent Passing

The Android programming environment is based on a kind of message passing system, or in
Android’s terminology, an intent passing (and processing) system [5]. An Android application
is built from three kinds of core components. All three – activities, services and broadcast
receivers – are activated through intents (see figure 3). Intent passing is used to implement
late run-time binding between components in the same or different applications. Additionally,
like applications installed by the user, native Android applications also use intents to launch
activities, services and to respond on broadcast events.

The intent object itself is a simple passive data structure holding information about the intent
[5]. We can imagine intents as a message object holding a destination component address and
some data to be processed. The Android API provides three methods which accept intents
as input and use the given information to start activities (startActivitiy(Intent)), start
services (startService(Intent)), and broadcast messages (sendBroadcast(Intent)) (see [6]
for details). Roughly spoken, there are two kinds of intents:

1. The ones holding information about an operation to be performed, and

2. in case of broadcasts, a description of something that has happened and is being an-
nounced.

Intent processing is divided into two groups. Explicit intents are an efficient way for sending
application-internal messages, such as an activity starting a subordinate service or launching
a sister activity. Explicit intents only work within and between your own applications. In all
other cross-application contexts, component names would generally not be known and there-
fore implicit intents are available to solve this problem. For this kind of intents no target is
needed and Android itself has to find the best component (or components) to handle the intent



4 Technical Report TR-syssec-12-01

Application

Intent

Category, Action
Data, Type

Components
Extras Service

startService(Intent)
bindService(Intent, Service 

Connection, int)

BroadcastReceiver

sendBroadcast(Intent)

* * * Intent * * *

new Intent(Context, Class)
new Intent(String <action>, Uri)

Activity

startActivity(Intent)

Figure 3: Android’s intent processing

[5]. To find out, which component to choose from, android uses implicit names called action
strings. For example if the VIEW action string is sent within an intent, the android system
will automatically direct the intent to the user’s preferred image viewing application. Note that
this inter-component communication (ICC) is very similar to inter-process communication in
Unix-based systems.

In the same way it’s possible, to define action strings for your own application. At first the
developer has to define a specific action string in the application manifest. And secondly he has
to create an intent filter, to find out what activity or service fits best to perform on a specific
action string. The intent filters make a decision according to different categories. The most
dangerous and at the same time the most interesting category for our research is the DEFAULT

category. This category allows us to replace one or more of Androids native applications such
as the SMS application. That means, a self-developed application can be used to respond on an
implicit intent. Afterwards the intent can either be discarded or forwarded to the next matching
activity, service or broadcast receiver (see [7] for details). If an intent is used to send an broadcast
message there are two ways other components are informed. Either sendBroadcast(intent)

is used and the android system decides by checking the intent filters of all broadcast receivers
which fits best. Or, if the order in which the broadcast receiver receives the intent is important,
sendOrderedBroadcast(intent) can be used. In the second case a priority value must be set in
the application manifest. This value, set within the <intent-filter> tag, is an integer where
a higher number stands for a higher priority.

3.2 Android’s Security System

The android security system is built on the base of a standard Linux system with some addi-
tional features. Data and applications are protected through a two-level security mechanism.
One directly at the system level and the second one at the inter-component communication
(ICC) level, built on the guarantees provided by the underlying Linux system. In almost all
cases android is able to prevent the system itself of higher damage because each application
runs as an independent process. The whole ICC-communication is controlled by the android
middleware by reasoning about labels assigned to applications and components. This so called



Intent Protection 5

access permission label is a simple text string, set in the application manifest. To control the
security of an application, developers have to assign a collection of permission labels (see [6]).
While “installing” an application, the user is asked to grant all requested permissions.

<uses-permission android:name=

"android.permission.RECEIVE_SMS"/>

When an intent is sent by a component, the reference monitor looks at the permission labels
assigned to the called application. The intent will be processed if and only if the target’s
permission label is in the collection of the calling component ICC establishment. That directly
means that a developer has to know the permissions of each component he wants to use.

Normally, when creating your own components and associated permission labels, nobody can
get access to your components because of unknown permission labels. But in some cases this
security level isn’t high enough. For this purpose a developer can set his component private
and ensure that no one other can use it. So, in order to increase the security of self-developed
applications and components, the private attribute should always be used.

As long as permission labels are unknown android and its security system is very secure at the
application level. But, whenever a permission label is known publicly, such as the android built-
in permission labels, and users aren’t carefully enough to decide which permissions should be
granted and which shouldn’t, android has significant security risks at the user level. Nevertheless
it’s not worth to lose all the benefits the android system brings to the mobile world by changing
the system architecture or philosophy. Rather, it gets most important to inform the users that
risk and security is up to them.

3.3 Modified Message Processing

The idea behind our attack is the interception of intents and the replacement of all native
Android activities and services used to perform an e-banking transaction. If we can achieve
this, we are able to do an e-banking transaction entirely without any user input. One thing we
have to consider before talking about this manipulation, is Android’s permission system. The
one and only possibility to get access to the intent system is to install a custom application
such as a general e-banking program. During the installation process Android asks the user to
grand permissions to use and replace activities, services and to listen to broadcast events. And
the interesting thing here is, all Android permission checks are done at installation. On later
execution the user is never prompted again to reevaluate those permissions (see [7] for details).

<uses-permission android:name=

"android.permission.RECEIVE_SMS"/>

After this permission is granted, we have to register our application as listener for incoming
SMS messages. The registration is done in the application manifest file by defining a broadcast
receiver listening on the SMS_RECEIVED event. If additionally the category is set to DEFAULT,our
newly installed application is the first one to be informed, if a new SMS message arrives.

<receiver android:name="mySMSReceiver">

<intent-filter>

<action android:name=

"android.provider.Telephony.

SMS_RECEIVED"/>

<category android:name=

"android.intent.category.DEFAULT"/>

</intent-filter>

</receiver>



6 Technical Report TR-syssec-12-01

User’s Android Device

Keyboard 
sniffer

Native SMS 
listener

Android
user

2, 5

4

3

New SMS 
listener

mTAN 
manipulation

Web browser

web server 
of the bank

1

Figure 4: Attacking e-banking – scenario 1

But this is only the first step to manipulate an e-banking transaction. The second thing to do
is to get access to the users account data. To achieve this, we will employ a keyboard sniffer,
which filters all intents [8] and waits for the user to type the banks URL followed by login and
password. Note that the keyboard sniffer is not limited to physical keyboards. In case of virtual
keyboards, we can detect the left-click and analyze the screenshot of the surrounding area of the
“cursor” (in case of a touch-screen the position of the fingertip), which will reveal the number,
the user just clicked (or tipped on) on.

Just by using this little amount of technical knowledge, we can consider the following straight
forward attack scenario. The user opens up the web browser and visits his e-banking portal. The
installed key sniffer is activated by entering the banks URL and catches the entered login data
(step 1 in figure 4). After initiating a transaction on the bank’s online portal, a confirmation
short message, holding the mTAN is sent to the customer. The new SMS listener receives the
mTAN SMS, and delivers the intent to the native SMS application without any modifications.
Hence, the user isn’t able to notice this initial step because the user triggered transaction is
performed as expected. But from now on our attacking tool works completely autonomous (see
figure 4). After opening the banks URL and providing login and password (step 2), the attack
tool initiates a transaction. By intercepting the mTAN short message (steps 3 and 4), the
transaction can easily be completed in step 5. In contrast to the user triggered transaction, the
mTAN short message is now deleted after the transaction has been completed.

Obviously, opening an e-banking session on the victims phone is quite time consuming and hence
very risky for the attacker. So we have to improve our attack scenario in order to reduce the risk
of the attacker being detected. The better way of attacking from the attackers point of view, is to
forward login and password to the attacker’s device (step 1 in figure 5). After receiving login and
password, the attacker starts the e-banking session, provides login and password and initiates
a transaction. The bank server responds with an mTAN short message which is intercepted by
the new SMS listender and – like login and password – forwarded from the victim’s device to
the attacker’s device (steps 3,4 and 5). Finally the mTAN is used to complete the malicious
transaction (step 6). Using this attack method, the victim has very little chances to detect the
malicious bank transaction.

Anyhow, the Android system itself is a very secure platform, because there is no way getting
around permissions granted by the user. But if the user makes one mistake or is tricked by a
wrong application description, everything becomes possible. Therefore you have to see Android



Intent Protection 7

User’s Android Device

Keyboard 
sniffer

Native SMS 
listener

Android
user

New SMS 
listener

Web browser

web server 
of the bank

Attacker’s device

1

2, 6

3

4

5
Web browser

Native SMS 
listener

Figure 5: Attacking e-banking – scenario 2

like every other computer operating system where the user has complete control and the full
responsibility for every installed program. In any case, Android phones are not a bit similar to
old cell phones with minimal functionality and maximal security. Hence cell phone users have
to rethink how to act and what could happen when using such a powerful Android device (see
[7] for details).

If the victim uses a PC to run the web browser, the attacker has to get control over the PC
and the users mobile phone. Assuming that the attacker has control over the victims PC or
managed to get the e-banking login and password by means of classical attacks like phishing,
he only needs to get hold of the mTAN short message which authorizes a specific transaction.
In this case, the attack tool for the smartphone is reduced to the manipulation of the SMS
management.

HI-handler
(priority = MAX)

U
se

r S
pa

ce Handler 1

Handler 2

LO-Handler
(priority = MIN)

Handler 1
(drops I)

Handler 2
(manipulates I)

Intent I

Intent I

In
te

nt
 I 

(ID
, M

A
C

, D
at

a)
 

en
te

rs
 th

e 
qu

eu
e

Intent I

Intent I

HI-handler
(priority = MAX)

LO-Handler
(priority = MIN)

Intent I

In
te

nt
 I 

(ID
, M

A
C

, D
at

a)
 

en
te

rs
 th

e 
qu

eu
e

Intent I

Warning: Timeout 
for intent I

HI-handler
(priority = MAX)

LO-Handler
(priority = MIN)

Intent I

In
te

nt
 I 

(ID
, M

A
C

, D
at

a)
 

en
te

rs
 th

e 
qu

eu
e

Intent I

Warning: No match 
for intent I’

Handler 1

Intent I

Intent I’

Processing of intent 
I completed

Handler 2
(inserts I’)

HI-handler
(priority = MAX)

LO-Handler
(priority = MIN)

Warning: No match 
for intent I

Handler 1

Intent I

(a) (b) (c) (d)

Handler 1

Intent I

Figure 6: Surveillance of the Event Processing Path



8 Technical Report TR-syssec-12-01

3.4 Open Problems

Due to their high risk potential, keyboard intent handlers cause a warning message each time they
are inserted into the system’s intent processing. Contrary to the displayed requested permissions
when installing the application, this warning should raise red flags and hence keyboard sniffers
should not be undetectable. In order to disguise our attack we need to find a workaround. Attack
methods for virtual PC keyboards might help: here, the attacker traces the mouse movement
and in case of a click he takes a (local) screenshot.

Our actual research shows no possibility to capture screen at the current position of the finger(s)
while typing on the soft keyboard. The main problem here is that there is no API provided
to do this on a not rooted android smartphone. This on one hand means the standard user
is provided with a very secure operating system without having to be afraid of identity theft.
Unfortunately on the other hand (from the point of view of this paper) we have to think of
other attack scenarios. The most feasible way should be a homemade application, for example a
malicious e-banking application or an alternative web browser. In this case we get full access to
soft keyboard text inputs when using a self-made view component. Here, a special method from
the view class (onKeyPreIme(int keyCode, KeyEvent event)) can be used to catch all key
events before the android IME (input method) consumes them. At the moment it is not clear,
if permissions have to be granted to catch the keyboard input in a way like this. Nevertheless
it is worth mentioning, that the return value of the view object’s onKey...()-Methods (see [9]
for details) is either true if the method handled the event, or false if the event should be
handled by the next receiver. This strongly suggests that there is a way to stealthily control the
keyboard events.

Another open problem is related to the manipulation of outgoing short messages. This process
seems not to be based on intents. Intents are only used to inform the system (by a broadcast
message) that a short message has been sent. Obviously, replacing the SMS application will help,
but our aim is to manipulate the behavior of the native SMS application: specific messages, e.g.
related to eBanking, should be blocked or forwarded to the attackers phone.

4 Countermeasures for PCs and Smartphones

4.1 Current Situation

At the time, the operating systems of the Windows-family and currently available anti-virus-
and anti-malware-software do not detect our prototype as being potentially malicious. As a first
step, there should at least be a warning for the user, if some program intends to modify the
message processing paths of the system.

The Android operating system displays a (warning) message, containing information on the
components (like contacts, WLAN or GPS) being used, when “installing” a new applet. Hence
the user can (or more precisely has to) decide, if he grants access or not. But in case of installing
a trojan with some obvious benefit for the user (like in our application scenario support for SMS-
management or SMS-SPAM-filtering), it may be quite reasonable for the user that the applet is
going to use his contacts, and messaging capabilities. So simply displaying the requested access
rights is not enough to protect the user from malware.

4.2 Warnings and automated Blocking of unwanted Actions

Instead of simply displaying the requested access rights, anti-malware-software could, depending
on the selected protection level, completely block the installation process of specific programs.



Intent Protection 9

Besides access rights, intent handlers have to be assigned a priority. This priority is used for
ordered insertion of the handler into the intent processing queue: an intent handler with a
specific priority is installed before all handlers with lower priority (also including the systems
intent handlers). These priorities can be used to improve the quality of information, which is
displayed to the user. Now, the displayed requested resources and access rights can be sorted by
their risk-level and their priority, so that the most “dangerous” ones appear at the beginning of
the list. Think of a list with dozens of entries; most commonly (like it is the case with disclaimers
and other information displayed during installation) the users will not read to the end.

4.3 Detecting manipulated Messages/Intents or manipulated Processing Paths

Concerning the priority of androids intent handlers, we came up with the idea of inserting one
special handler with the highest possible priority (HI-handler) and one with the lowest possible
priority (LO-handler – see figure 6 left). The first idea was to attach some sort of cryptographic
checksum to all incoming intents. This raises two problems: first we need a shared secret with
the second handler and second, the second handler has no chance to detect dropped intents. So
we decided to inform the second handler about the arrival of a certain intent. Based on this
information, the second handler can now check if

1. all intents have been processed (i.e. have run through) the entire event processing queue,

2. no intents have been manipulated on their way through the event processing queue and

3. no additional intents have been inserted into the processing queue (from handlers residing
inside the processing queue).

By this, we can detect deleted (see warning (b) in figure 6), manipulated intents (see warning
(c) in figure 6) and inserted intents (see warning (d) in figure 6). Unfortunately, we can not
detect intents inserted by malicious programs, because these intents would enter the processing
queue at the top, where the high-priority-handler is located. Nevertheless, logging the events
and processing the logged data by use of anomaly detection, could help to identify malicious
programs.

Obviously, both handlers sketched above should either be integrated in the android OS (i.e.
outside the space for user handlers) or both should have priority levels not accessible to ordinary
user programs. Otherwise, the attacker could insert his handler before the system’s first handler
and hence again compromise the system.

5 Conclusion

In this paper we presented attack methods for authorization processes based on SMS-TANs. The
presented attack scenarios work on all systems based on mTANs: Besides e-banking, examples
include so called mobile signatures (here, a server digitally signs documents on the users behalf;
the authorization is again secured by means of mTANs [10]) and single-sign-on-systems (e.g.
ProSoft’s SMS Passcode [11]).

At the time of writing, we are working on a proof-of-concept implementation of the attack
scenarios and the countermeasures described above for Android smartphones. Additionally,
current research includes refinement of the proposed countermeasures and developing further
mechanisms to automatically detect malicious intent handlers.



10 Technical Report TR-syssec-12-01

References

[1] C. Paget (alias Foon), “Exploiting design flaws in the Win32 API for privilege escalation.
Or... Shatter Attacks – How to break Windows.” archived version on http://web.archive.
org/web/20060904080018/http://security.tombom.co.uk/shatter.html, August 2002.

[2] ——, “Shatter attacks - more techniques, more detail, more juicy goodness.” archived ver-
sion on http://web.archive.org/web/20060830211709/security.tombom.co.uk/moreshatter.
html, Mai 2003.

[3] T. Close, A. Karp, and M. Stiegler, “Shatter-proofing Windows,” archived on http://www.
blackhat.com/presentations/bh-usa-05/BH US 05-Close/tylerclose whitepaper US05.pdf,
2005, (Whitepaper at Black Hat USA 2005).

[4] Android, “Android Operating System,” http://www.android.com, 2011.

[5] ——, “Android Developers: Intents and Intent Filters,” http://developer.android.com/
guide/topics/intents/intents-filters.html, 2011.

[6] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android security,” IEEE Security
& Privacy Magazine, vol. 7, pp. 50–57, 2009.

[7] R. Meier, Professional Android 2 Application Development. John Wiley & Sons Ltd, 2010.

[8] Android, “Android Developers: Handling UI Events,” http://developer.android.com/
guide/topics/ui/ui-events.html, 2011.

[9] ——, “Android Developers: public class View,” http://developer.android.com/reference/
android/view/View.html, 2011.

[10] A-Trust, “Mobile Signatur, Handy Signatur,” http://www.handy-signatur.at, 2011.

[11] ProSoft, “SMS Passcode,” http://www.prosoft.de/produkte/sms-passcode, 2011.


